
hr. J. HCW Muss Transfer. Vol. 36, No. 12, PP. 2977-2986. I993 0017-9310/93 $6.00+0.00 
Printed I” Great Britain 8x2 1993 Pergamon Press Ltd 

Optimal experimental design for estimating 
thermal properties of composite materials 

R. TAKTAK, J. V. BECK and E. P. SCOTT? 

Heat Transfer Group, Department of Mechanical Engineering, Composite Materials and 
Structures Center, Michigan State University, East Lansing, MI 48824-1226, U.S.A. 

(Received 14 August 1992 and inJinalform 12 January 1993) 

Abstract-Design of optimal transient experiments is needed for the efficient estimation of thermal con- 
ductivity and volumetric heat capacity of composite materials. One criterion for optimal experiments is 
the minimization of the area (or volume) of the confidence region. The experimental designs are transient 
and involve both finite and semi-finite geometries with finite duration heating. Two cases are considered 
for the finite body : one-dimensional heat conduction within cured composite materials and one-dimen- 
sional heat conduction within composite materials undergoing curing. The optimal dimensionless heating 
and experimental times at the heated boundary and the optimal location of the temperatures sensors are 

determined. 

INTRODUCTION AND LITERATURE REVIEW 

IN PERFORMING experiments, the researcher would like 

to gain as much insight and information from the 
results as possible. To reach this goal, experiments 

have to be designed properly. The design of exper- 
iments has been the topic of a number of papers in 
the fields of statistics [l-9], chemical engineering [lo], 
and mechanical engineering [ 1 l-l 71. 

The design of optimal heat conduction experiments 
for determining thermal conductivity, k, and volu- 
metric heat capacity, c, was considered by Beck and 
Arnold [13, chap. 81; in this book, two one-dimen- 
sional rectangular geometries were analyzed : a finite 
geometry insulated on one boundary and subject to a 
heat flux on the other boundary and a semi-infinite 

geometry with a heat flux boundary condition. The 
optimal experiments were defined to be those that 
minimized the confidence region fork and c for certain 
statistical assumptions and certain given conditions, 
such as for a semi-infinite body and for a finite body 
insulated on one surface. For the finite geometry with 
one surface insulated, the best experiment cor- 

responded to a prescribed heatJlux producing a step 
change in temperature on one boundary, with the 
temperature sensors placed at both boundaries. The 
use of an insulated boundary is appropriate for metals 
(which have relatively high thermal conductivities) ; 
polymer based composite materials, on the other 
hand, tend to have low thermal conductivities and are 
difficult to insulate. However, it is not difficult to 
approximate an isothermal boundary condition at the 
unheated surface by placing the composite specimens 
in intimate thermal contact with a high conductivity 
material. Similarly, for the semi-infinite geometry, the 
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best experiment resulted from a prescribed time-vari- 
able heat flux producing a step change in temperature 
and two temperature sensors, with one at the heated 
surface and the second at an internal location deter- 
mined by a particular dimensionless time. It is not easy 
to achieve a step change in temperature by applying a 
time-variable heat flux. However, a finite-duration 
constant heat flux can be readily accomplished by 
applying a constant voltage across a heater of known 
resistance for a finite time period. 

This paper focuses on the analytical design of opti- 
mal transient heat conduction experiments performed 
in our laboratory on orthotropic materials (composite 
materials can be modeled as such). These experiments 
have been designed to estimate k and c of carbon- 
fiber/epoxy-matrix composite materials. Three differ- 

ent cases were considered : one-dimensional heat con- 
duction experiments in cured composite materials of 
finite thickness, one-dimensional heat conduction 
experiments in thick cured composites which can be 
approximated by a semi-infinite geometry, and one- 
dimensional heat conduction in finite composite 
materials undergoing curing. For the two finite 
geometries, the optimal heating durations were con- 
sidered for one-dimensional plates having an iso- 
thermal condition opposite to the heated surface. The 
results of this analysis were applied in our laboratory 
on composite materials ; however, this analysis can 
also be applied to metals with and without chemical 
reactions, provided the x = L surface is nearly iso- 

thermal. 

THEORETICAL PROCEDURE 

The choice of an optimal design must be based on 
some criteria. Three optimality criteria are given by 
Beck and Arnold [ 13, p. 4321; all of these criteria are 
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related to the sensitivity coefficient matrix, X, which 
is described below. The entries of this matrix are the 
dimensionless sensitivity coefficients. There are two 
parameters under consideration : thermal conduc- 
tivity, k, and volumetric heat capacity, c. The two 
dimensionless sensitivity coefficients associated with 
these parameters, A’,+! and A’& are defined as 

In equation form, the determinant, D’, for the case 
of two parameters is 

D’ = det (X’X) (3) 

where the sensitivity matrix X is defined by : 

X+ = k aTi i= 1,2,...,n (lj X = [V,TT@)IT = 
X(2) I . . 

I. I 
-- I . 3 
qoL/k 8k 

LX(n)l 
pw) X,,(i) ... x,,q 

(2) 

where q. is a constant heat flux, T is temperature, L. 
is the sample thickness, i is the time index, and n is 
the number of measurements. 

X,,(i) Xz2(i) . . . X,(i) 

X(i) = ; ; . . . j . t&b) 

The optimality criterion [ 13, p. 4321 is based on the The entries X,(i) of this matrix are the partial deriva- 
maximization of the determinant, D’, of the sensitivity tives of the dependent variable T measured at time t, 
coefficient matrix and its transpose. It is subject to by the j-th sensor with respect to the k-th parameter 
a rn~~~rnu~z temperature rise, a ,$xed number of (here there are two parameters : thermal conductivity, 
measurements, and the eight standard statistical and volumetric heat capacity). These partial deriva- 
assumptions. These assumptions are summarized as tives are the sensitivity coefficients defined by equa- 
additive uncorrelated normal errors with zero mean tions (1) and (2). They are defined for uniformly 
and constant variance, with errorless independent spaced measurements in time between 0 and t,’ , and 
variables, and no prior information. This criterion for a fixed large number of time steps. The constraint 
was selected because it minimizes the hy~rvolume of of a fixed large number of equally spaced measure- 
the confidence region of the parameter estimates. ments and the same maximum temperature rise can 
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be incorporated in D’ by defining a dimensionless D 
for. two parameters by [13, p. 4341 

D = C:,C:,-(CT,)’ (5) 

where 

(6) 

where fl, = k and /?* = c. The term CG is the time 
average of the temperature for all sensors divided by 
the square of the dimensionless T-rise ; this incor- 
porates in D the complete sensitivity for the entire 
experiment, over all relevant times and over all 

sensors. 
Numerical values for the temperature distribution 

in the geometry of interest are needed ; for the inves- 
tigated cases, these solutions are derived by classical 
methods [I81 ; finite element or finite difference 
methods could also be used. The sensitivity co- 
efficients are then computed by differentiating the 
temperature solutions with respect to thermal con- 
ductivity or volumetric heat capacity. The deter- 
minant, D, is calculated from equation (5). The opti- 
mal experimental conditions are then established 
through the comparison of the values of D obtained 
for different experimental parameters, such as the 
duration of the heating time, the duration of the 
experiment (or equivalently, the duration after heat- 
ing), and the sensor placement within the composite. 

ANALYSIS 

Three cases were considered in this study. First, 
one-dimensional heat transfer was considered in a 
finite cured carbon/epoxy composite, with the heat 
transfer in the direction perpendicular to the fiber 
axis. In the second case, one-dimensional heat transfer 
was studied in a thick cured carbon/epoxy composite 
thermally behaving as a semi-infinite body. Finally, 
the finite composite was considered during curing, 
and a heat generation term is added in the analysis to 
account for the exothermic chemical reactions of the 
epoxy matrix. 

Finite cured composite (X21 BSOTO) 
Carbon-fiber/epoxy-matrix composite materials 

tend to have low thermal conductivities for which 
an isotherm can readily be approximated at the 
unheated surface. The experiment shown in Fig. 1 
and analyzed here allows for the measurement of this 
relatively low thermal conductivity. The specimen is 
a slab of finite thickness, L, with one boundary sub- 
jected to a heat flux produced by a heater (constant 
for a prescribed time and then zero), and the second 
boundary having a constant temperature (the number 
for this case is X21B50TO; see Beck et al. [18]). The 
advantages of this experiment include the ability to 
obtain the heat flux experimentally, the simplicity of 

0 

FIG. 1. Cured composite geometry. 

the experimental procedures (for example, the heat 
flux is controlled by simply turning it on and off) and 
the relative ease of the composite sample preparation 
due to its simple geometry. The heat conduction equa- 
tion, boundary conditions, and initial conditions in 

nondimensional form are 

a*T+ aT+ 
ax+Z=at+, o<x+<1, t+>o (74 

aT+ -1 O<t+<Q 
-= 
ax+ 0 th+ <t+ <t,” 

at x+ = 0 (7b) 

T+ =O, at x+ = 1 , t+>o (74 

T+=O, for O<x+<l, t+=O. (7d) 

The thermal properties are assumed to be T-inde- 
pendent. The dimensionless time tl is the dimen- 
sionless heating duration. The dimensionless variables 

are defined as 

T- T,, 
T+ =p 

q,Llk ’ 
t+ = m/L*, th+ = u&/L*, x+ =x/L. 

@a,b,c,d) 

Equation (7b) gives the heat flux condition, and equa- 
tion (7~) gives the isothermal condition. 

One method for the solution to this problem 
involves the use of the method of superposition. Up 
to time th+, the temperature solution of equation (7a) 
is obtained for a heat flux condition starting at time 
zero using the method of separation of variables [18, 
p. 1711: 

T+(x+, t’) = (1 -x+)-2 f 4 
WI=, Awl 

xcos(A,x+)e-‘,~fr+, 0 < t+ < tl (9a) 

where I.,,, is equal to (2m- 1)7c/2. Note that the 
maximum value of T+ occurs at steady state and is at 
x+ = 0; the maximum value is T+(O, co) = 1. For 
t> thf, superposition is employed, and the solution 
for a heat flux condition starting at dimensionless 
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time I: is subtracted from the solution for the heat 
flux condition starting at time zero, shown above in 
equation (9a). The resulting solution is : 

Xi =2 1 cos(l.,,,.~+)[-f+ e~‘i,” 

T+(x+,t’) = -2 i: ’ 
,,/ - I 42, 

x cos (&.Y+) 

x [ebb+ -e Ji,cf- 5: ‘1, t,i < t + d t,: (9b) 

where t,’ is the final time for taking measurements. 
The next step is to compute the dimensionless sen- 

sitivity coefficients defined by equations (1) and (2). 
The differentials in these equations are found by 
differentiating the temperature solutions shown in 
equations (9a,b) with respect to the parameters, k and 
c. The i subscript used in equations (I) and (2) is 
dropped in the remainder of the paper for simplicity 

of notation. The resulting sensitivity coefficients for 
the thermal conductivity are : 

XCOS(~~,,.Y+)~-“~~~‘+ (I +n;,t+), 0 < t+ < ti: (IOa) 

x: = 2 i: .‘, cos(~,,,.~+)[e~~‘i’- (1 +i.z,t+) 
I),=- I 4;7 

_e /.,;,(I+ --I,:, (I +E$(t+ -th+))], tht < t+ < t,‘. 

(lob) 

+(1--t;), ,.‘,If’ ‘:‘I, t,: < t+ < r,;. (Ilb) 

The sensitivity coefficients for thermal conductivity 
and volumetric heat capacity are shown as functions 
of time for t,: = t,’ in Fig. 2. The magnitude of the 
thermal conductivity sensitivity coefficient is about 
equal to that of T+, while the sensitivity coefficients 

for the volumetric heat capacity are smaller but still 
on the order of T+ for some times. Also note that the 
shapes (except at early times) of the thermal con- 

ductivity and volumetric heat capacity sensitivity 
coefficient curves are quite different. These obser- 
vations verify that the two sensitivity coefficients. XT, 
and XT, are ‘large’ (i.e. on the order of T+), and 

uncorrelated (different shapes), which are desirable 
conditions for parameter estimation. Since the k sen- 
sitivity coefficient shown in Fig. 2 is larger in mag- 
nitude than the c sensitivity coefficient, on the average 
k should be estimated more accurately than L’ for such 
experiments. For the insulation conditions discussed 
in ref. [ 131, the opposite is true. Hence, the isothermal 
condition is preferred over the insulation condition if 
k is of primary interest. 

Likewise, the sensitivity coefficients for the volumetric 

heat capacity are : 

The final step of the analysis requires the deter- 

mination of the determinant, D. The maximum tem- 
perature rise. T,t,,, is first determined from equations 

(9a,b) with .Y+ = 0, and the sensitivity coefficients, 
XT and XT. are found from equations (IOa,b) and 
(I la,b). The CG matrix coefficients are then found 
from equation (6), using the calculated values of r;,,,, 
XT, and XT and integration. Finally, the deter- 

minant, D, is calculated from equation (5). The detcr- 
minant was found and compared using different heat- 

FIG 2. Dimensionless sensitivity coefficients, XT and Xi, as functions of dimensionless spatial position, 
x+, for cured composite with finite geometry. 
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FIG. 3. Effect of the dimensionless heating time, thf , on the determinant, D, for the cured composite with 
finite geometry. 

ing times (th+) and different experiment durations (t,+) 

(Fig. 3), and the different sensor locations (Fig. 4). 

Semi-infinite cured composite (X2OBSTO) 
The second case considered is similar to the first 

case, with the exception that the sample is thermally 
thick ; thus, it behaves as a semi-infinite body with a 
constant heat flux at its surface (the number in this 
case is X20B5TO ; [18, chap. 21). In this case, the 
heat conduction equation, boundary conditions, and 
initial conditions are : 

a2T aT 
kx,x=cz, O<x<co, t>O 

-kaT= qo 0 <t+ < fh 

ax 0 l>Ih ’ 
at x+=0 (12b) 

T= To, at x > 0, t = 0. (12c) 

For convenience, the following dimensionless groups 
are defined for this case : 

T-T, 
T+ =p 

qoxolk’ 

t+ =“f 
29 

X+ =I? 
X0 x0 

(I 3ahc) 

where x,, can be any given location inside the body 
(not at the surface). 

The basic dimensionless temperature is given by 
[18, p. 1511 

0.008- 

n 0.006- 
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FIG. 4. Effect of a single sensor’s location, x+, on the determinant, D, as a function of the dimensionless 
time, t+, for the cured composite with finite geometry. 
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T+(x+, 1’) = 2JtF ierfc 

Equation (14) is used in a similar manner as for case 
X2lB50TO to obtain the equation for t+ > th+, and 
the equations for A’: and A’:. 

The determinant, D, is again calculated from equa- 
tion (5) as described for the first case involving a finite 
geometry. The solutions corresponding to different 

heating times th+ are found and shown in Fig. 5 for 
a sensor at the heated surface and another one at an 
in-depth location. (Since there are two locations, nt in 

equation (6) is 2.) 

Composite undergoing curing (X21 B50Gl TO) 
The third case considered is that of finite-body one- 

dimensional heat conduction through a carbon- 
fiber/epoxy-matrix composite material undergoing 
curing. The experimental set-up and boundary con- 
ditions used for the cured composite case are also 
considered here. The solution procedure is similar to 
that shown for the cured composite ; however, in this 
case, heat is generated from the chemical reactions 
occurring during the curing of the epoxy matrix. This 
results in an extra term appearing in the one-dimen- 
sional heat conduction equation. For the purpose of 
this study, this heat generation term was considered 
to be constant, and the resulting energy equation in 
dimensionless form is 

o”‘TC 
s.y+ +go’ = ;;;, Y,’ = SOL/Y”. (15) 

The dimensionless terms, T+, t+, and x+ are given 
by equations (8a,b,d), and the boundary and initial 
conditions are given by equations (7b-d). 

The temperature solution for the energy equation 

shown by equation (15) and the initial and boundary 
conditions given in equations (7k--d) is 

T+(x+,t+) =g(:(l-.u+) $-(I -.uT)-2 i: 
It?= I 

(16a) 

(16b) 

The sensitivity terms in equations (1) and (2) were 

found by solving equations (16a,b) for T, and 
differentiating with respect to the parameters thermal 

conductivity, k, and volumetric heat capacity, c, 
respectively. 

The determinant, D’, is then calculated from equa- 
tion (3). The matrix coefficients shown in equation (3) 
and defined by equation (4) are determined from the 
maximum temperature rise, T,i,,, found from equa- 
tions (16a,b) with x+ = 0, and the sensitivity 
coefficients, XT and XT, are found as described 
above. In this case, the solutions resulting from 

different heating times, th+ , were found and compared. 
Two different values for the dimensionless heat gen- 

eration term, CJ~, were used in this analysis. See Figs. 

6and7. 

0.0035 
- t+, = 0.5 

t+ 

FIG. 5. Effect of the dimensionless heating time, tz, on the determinant, D, for the cured composite with 
semi-infinite geometry, with a thermocouple at the heated surface and another one at an in-depth location. 
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FIG. 6. Effect of the dimensionless heating time, f+ h , on the determinant, D, for the composite undergoing 
curing with the dimensionless heat generation term, g,’ , equal to 0.1. 
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FIG. 7. Effect of the dimensionless heating time, t+ h , on the determinant, D, for the composite undergoing 
curing with the dimensionless heat generation term, gi, equal to 1 .O. 

RESULTS AND DISCUSSION Finite cured composite (XZlB5OTO) 

The determinant, D, was compared for different 
experimental conditions, such as different heating 
times (th+), total measurement times (t,‘), and sensor 
locations, to determine the optimal experimental con- 
ditions. In the first case, a cured composite was con- 
sidered, and the experimental variables included heat- 
ing time, total experimental time, and sensor location. 
In the cases of the cured thick composite and the 
composite undergoing curing, the experiment was 
optimized with respect to heating time and total exper- 
imental time. 

The optimal criterion used in this study is based 
on the determinant, D, which involves the sensitivity 
coefficients, XT and X:. Therefore, investigation of 
the sensitivity coefficients can be useful in providing 

insight into the optimization procedure. For this 
investigation, the heating time, th+ , is considered to be 
equal to the total experimental time. Figure 2 cor- 
responds to the transient change of the thermal con- 
ductivity sensitivity coefficient, XT. Each curve starts 
at zero and goes to a non-zero negative, steady state 
value ; the magnitude of the sensitivity coefficients is 
largest at the heated surface. Figure 2 also shows that 



the volumetric heat capacity sensitivity coefficient, 
XT, becomes essentially zero shortly after the dimen- 
sionless time, t+, equals 2. This indicates that little 
additional information is obtained using values of /’ 

greater than 2 for the estimation of the volumetric 
heat capacity. The sensitivity coefficients, as shown 
in Fig. 2, are not linearly dependent on each other, 
consequently, k and c can be simultaneously and inde- 
pendently estimated ; see ref. [ 13, p. 3491. 

The first experimental variable investigated was the 
heating time, tl, for the heat flux boundary condition 
at .Y+ = 0. Five different dimensionless heating times 
were considered, and the results for the determinant, 
D, are shown in Fig. 3 for a single sensor at s+ = 0. 
The curve having the highest peak represents the 
maximum value of the determinant, D: this value of 
D equal to 0.0195 corresponds to a dimensionless 
heating time of about 2.5, and a ‘cooling’ time of 0.73. 
A heating time of 2.25 (not shown) results in a slightly 
higher maximum value of D; in this case, the 
maximum value is approximately equal to 0.020 which 
occurs at dimensionless time of 2.983. 

An interesting aspect of Fig. 3 is that the optimal 
heating time curve obtained by joining the peaks of 
the four different adjoining curves has a rather flat 
peak between dimensionless heating times of 1.5 and 
3.5 ; this implies that any values used within this range 
will be close, in terms of the optimum, to the optimal 
value. Hence, the choice of the optimal heating time 
does not have to be precise. Notice that the choice of 
the duration of the experiment after heating, t,’ - t,+, 
is crucial. The four high-peak curves show a sudden 
drop in the value of D. which means that taking the 
data longer than the time at which D is maximum 
lowers the value of D and degrades the quality of the 
sought thermal properties k and c (it is assumed that 
the same number of measurements is taken regardless 
of the experiment duration). The maximum value of 
D occurs a constant 0.73 dimensionless time interval 
after the heating time ; this implies that the total dur- 
ation of the optimal experiment is about 3. Note also 
that for a given heating time, an error of say 10% in 

the chosen optimal duration of the experiment has 
less effect on driving the value of D away from the 
maximum one than a 10% error in an experiment 
lasting longer, and for which the value of the deter- 
minant is away from the peak. Note that information 
regarding the rapid degradation in the value of D (if 
the same number of measurements is spread over a 
larger time) is lost if an optimizing program is used 
and only the maximum is found. 

Another clarification might help. More measure- 
ments invariably contain more information if the same 
size time step is taken, such as going to time 125 s 
rather than 100, both with time steps of 1 s. In such 
cases, the confidence interval should decrease with 
increasing number of measurements. That is not what 
is being held constant in this analysis ; the number of 
equally spaced measurements is held constant. If the 
total duration of the experiment is allowed to become 

large for a fixed number of measurements. then it is 
possible for the finite duration of heating experiment 
to be poorer than the heating over the total expcrimcnt 
(see for example Fig. 3 for rz = 2 and t’ grcatcr than 

5). 
The next factor considered was the sensor location. 

Figure 4 shows four curves corresponding to four 
different sensor locations. The maximum value of the 
determinant, D, corresponds to the sensor at the 
heated surface. This is because, as shown in Fig. 2, 
the sensitivity coefficients at the heated surface have 
the greatest magnitude. It is then concluded that, 
when using a single sensor, it is best to place it as 
close to the heated surface as possible, provided the 
measurement errors are independent of location. 

Semi-inJinite cured composite (X20BSTO) 
The experimental variable investigated was the dur- 

ation of the heat pulse referred to as the heating time, 
th+. The determinant, D, with one sensor at the heated 
surface and a second one at an internal location, x,,, 
was calculated for six different dimensionless heating 
times. The resulting curves are shown in Fig. 5. This 
figure shows that the optimal dimensionless heating 
time is approximately 1.0 which corresponds to a 
value of D of 0.0031. The optimal duration of the 
experiment is shorter for this geometry than for the 
finite body geometry ; indeed, the total optimal exper- 
iment lasts only a heating time period plus about 0.2. 
making the optimal dimensionless total time equal to 
about 1.2. The abrupt increase after heating stops, 
and rapid decrease after the maximum illustrate the 
importance of plots such as Fig. 5. If the duration of 
a fixed number of equally-spaced measurements is 
extended, the value of the determinant decreases so 
much as to become smaller than that one cor- 
responding to collecting measurements only over the 
heated period. 

Compurison of’ results 

At this point, a comparison of the current study 

with other published results is needed. Two geometries 
are described in ref. [13, Chap. 81, a finite and a semi- 
infinite body. These two geometries are subjected to 
boundary conditions different from the ones used in 
the current study. Table I lists the boundary con- 
ditions, the locations of the temperature sensors, and 
the values of the determinant D for the different cases. 
Cases I, III, IV, and V come from ref. [13, Chap. 
81, while cases II, VI, and VII are from the present 
study. For the finite geometry, cases VI and VII show 
a larger value of D (0.020 and 0.012 respectively) than 
cases III, IV, or V. This implies that, for a finite 
geometry, to estimate the thermal properties of inter- 
est, it is better to have a constant temperature bound- 
ary than to insulate one side with a finite duration 
heat pulse on the other side. For the semi-infinite 
geometry, a finite duration heat flux boundary con- 
dition with measurements lasting 0.2 after the end 
of the heat flux (with D = 0.0031) makes a better 
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Table 1. Comparison of the maximum of the determinant, D, values for 7 cases 

Boundary Sensor Max. opt. 
Case Geom. condition(s) location(s) D opt. fh+ dur. 

I semi-infinite (XZOBITO) 

II semi-infinite (X2OBSTO) 

III finite (X22BIOTO) 

IV finite (X22Bt OTO) 
V finite (X22BSOTO) 
VI finite (X21 B5OTO) 

VII finite (XZIBIOTO) 

a. Beck and Arnold [13, Chap. 81. 
b. This study. 

experiment than a continuous heat flux that lasts dur- 
ing the whole experiment (where D is 0.00263). 

The results of four experiments conducted in our 
laboratory on a finite slab were found consistent with 
the analytical optimal experiments study. Two exper- 
iments were optimal and two were not. One optimal 
experiment ended at the optimal dimensionless time 
of 2.5, while the other optimal experiment ended at a 
dimensionless time of 0.73 after the heating ends. The 
non-optimal experiments were similar to the optima1 
ones except for their short durations of 0.5 and 1.23. 
The areas of the square confidence regions cor- 
responding to the four experiments were compared. 
The area of the confidence region corresponding to 
the first optimal experiment was 16.32 (W m- ’ “C ‘) 
(J mm3 “C- ‘) as opposed to the non-optimal one 
of 2883.58, while the area of the confidence region 
corresponding to the second optimal experiment was 
11.43 as opposed to the non-optimal one 2291.53. 
Better experiments (reflected by smaller confidence 
region areas) were hence achieved when the dimen- 
sionless heating time is about 2.5 ; these experiments 
were further improved by taking measurements after 
the end of the heating period for a dimensionless time 
of 0.73. 

Finite composite undergoing curing (X2l~SOG~~~) 
The experimental variable considered for the com- 

posite undergoing curing was the heating time, il. 
Results for the determinant, D, with a single sensor 
at the heated surface and six different dimensionless 
heating times are shown in Fig. 6 for a dimensionless 
heat generation term 9:: equal to 0.1 and in Fig. 7 
for go’ equal to 1 .O. The curves shown in both of these 
figures indicate that the highest value for the deter- 
minant, D, resulted from a dimensionless heating 
time, rz, of 2 and occurs approximately a constant 
0.66 dimensionless time interval after the heating ends. 
Further analysis of the case with gz = 0. I indicated 

heated 0.00263 t,’ = 1.5 r,’ = 1.5 a 
surface and 
in-depth 
heated 0.003 I I.0 1.2 b 
surface and 
in-depth 
heated 0.00098 1,’ = 1.2 r,+ = I.2 a 
surface 
x+ = 0 and 1 0.0058 r$ = 0.65 rt = 0.65 a 
.Y+ = 0 and 1 0.0088 0.4 0.6 
heated 0.020 2.25 2.98 : 
surface 
heated 0.012 I: = 7 I,+ = 7 b 
surface 

----- 

that the maximum value of D of 0.0205 is slightly 
higher with tc = 2.125. This heating time is only 5.5% 
less than the optimal value of 2.25 found for the cured 
composite sampie (go’ = 0). The optimal heating time 
of 2 found for the case with g$ = 1 .O is 11% less than 
the optima1 value for the $0’ = 0 case. 

Comparing Figs. 6 and 7 with Fig. 3 (g$ = 0), the 
magnitude of the maximum determinant value 
decreases as the value ofg,+ increases. In addition, the 
peaks of the curves obtained by joining the maximum 
determinant values in Figs. 3, 6, and 7 flatten as the 
value of go’ increases indicating that any heating time 
close to the optimum will produce similar results. A 
third interesting point is that the maximum deter- 
minant value for the case in which the heating time is 
equal to the ex~~mental time increases as the value 
of gof increases. 

SUMMARY AND CONCLUSIONS 

This paper focused on the optimization of one- 
dimensional transient experiments for the deter- 
mination of the thermal conductivity and the volu- 
metric heat capacity of carbon-fiber/epoxy-matrix 
composite materials. An optimal criterion was pre- 
sented, and the optimization procedure for three 
cases, including finite geometry cured composites, 
finite composites undergoing curing, and semi-infinite 
cured composites, was derived. The effects of three 
experimental parameters (heating time, dumtion of 
the experiment, and the placement of sensors) on the 
optimal criterion were then considered. The analysis 
was performed for the linear case where the thermal 
properties are constant ; however, a similar procedure 
can be applied to non-linear problems corresponding 
to temperature dependent properties. 

From this analysis, it was concluded that the opti- 
mal dimensionless heating time for a fixed number of 
measurements and for one-dimensional experiments 
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with a heat flux on one boundary and a constant 
temperature at the second boundary of cured com- 
posite samples is approximately the dimensionless 
time of 2.25 with an additional dimensionless time of 
0.73 after the heating ; the optimal location of sensors 
in the case is the heated surface. In addition, the 
analysis of the experimental design for the finite 
geometry in this study resulted in a higher value of 
the optimal criterion (the determinant, D) than was 
found in ref. [ 131 for an insulated surface (X22B 1 OTO). 
This indicates that the experimental design presented 
here, with one boundary at a constant temperature 
and the second boundary with a finite duration heat 
flux (X21BlOTO), is a better one for estimating the 

thermal properties than with an insulated boundary. 
Also, since composite materials tend to have low ther- 

mal conductivity values are are consequently difficult 
to insulate, this X21 BlOTO design is much easier to 
implement experimentally than the X22Bl OTO design 
[ 131. It should also be noted that the X21 Bl OTO case 
produces more accurate (on the average) parameter 
estimates than the X22B 1 OTO case ; this is particularly 
true for the thermal conductivity. 

For a thick composite behaving as a semi-infinite 
body with a finite duration constant heat flux (Case 
II), the value of the optimal criterion found in this 
study is larger than that of Case I shown in Table I. 
Imposing a finite-duration heat flux for a dimen- 
sionless time 1 .O, and taking measurements for a non- 
dimensional period of 0.2 after that is better than 
heating throughout the entire data collection process. 

Finally, in the case of the composite undergoing 

curing, dimensionless heat generation terms of 0.1 and 
1.0 reduced the optimal dimensionless heating time 
5.5% and II %, respectively, from the value obtained 
with no heat generation. In addition, it was found 
that increasing the dimensionless heat generation term 
slightly reduced the optimal criterion (the maximum 
value of the determinant, D), which indicates that the 
potential parameter estimates would be slightly less 
accurate compared with those obtained without heat 
generation. 
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